Falcon: A Reliable, Low Latency Hardware Transport

Arjun Singhvi, Nandita Dukkipati, Prashant Chandra, Hassan M. G. Wassel, Naveen Kr. Sharma,
Anthony Rebello, Henry Schuh, Praveen Kumar, Behnam Montazeri, Neelesh Bansod,
Sarin Thomas, Inho Cho, Hyojeong Lee Seibert, Baijun Wu, Rui Yang, Yuliang Li, Kai Huang,
Qianwen Yin, Abhishek Agarwal, Srinivas Vaduvatha®, Weihuang Wang", Masoud Moshref",

Tao Ji*, David Wetherall, and Amin Vahdat
Google LLC

ABSTRACT

Hardware transports such as RoCE deliver high performance with
minimal host CPU, but are best suited to special-purpose deploy-
ments that limit their use, e.g., backend networks or Ethernet with
Priority Flow Control (PFC). We introduce Falcon, the first hard-
ware transport that supports multiple Upper Layer Protocols (ULPs)
and heterogeneous application workloads in general-purpose Eth-
ernet datacenter environments (with losses and without special
switch support). Key design elements include: delay-based con-
gestion control with multipath load balancing; a layered design
with a simple request-response transaction interface for multi-ULP
support; hardware-based retransmissions and error-handling for
scalability; and a programmable engine for flexibility. The first Fal-
con hardware implementation delivers a peak performance of 200
Gbps, 120 Mops/sec, with near-optimal operation completion times
that are up to 8x lower than CX-7 RoCE under network congestion,
and up to 65% higher goodput under lossy conditions.

CCS CONCEPTS

« Networks — Transport protocols; Data center networks.

KEYWORDS

Hardware Transport, Datacenter Networks, Remote Direct Memory
Access, Network Interface Card

ACM Reference Format:

Arjun Singhvi, Nandita Dukkipati, Prashant Chandra, Hassan M. G. Was-
sel, Naveen Kr. Sharma, Anthony Rebello, Henry Schuh, Praveen Kumar,
Behnam Montazeri, Neelesh Bansod, Sarin Thomas, Inho Cho, Hyojeong
Lee Seibert, Baijun Wu, Rui Yang, Yuliang Li, Kai Huang, Qianwen Yin,
Abhishek Agarwal, Srinivas Vaduvatha, Weihuang Wang, Masoud Moshref,
Tao Ji, David Wetherall, and Amin Vahdat. 2025. Falcon: A Reliable, Low La-
tency Hardware Transport. In ACM SIGCOMM 2025 Conference (SSGCOMM
’25), September 8—11, 2025, Coimbra, Portugal. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3718958.3754353

1 INTRODUCTION

Modern datacenter workloads demand excellent networking perfor-
mance. Applications such as high-performance computing, scaleout
AI/ML, and real-time analytics need high bandwidth and low la-
tency transfers. Modern storage systems need high Read/Write
operation rates to fully utilize high-performance SSD devices. And

*Work done while at Google.

This work is licensed under a Creative Commons Attribution 4.0 International License.
SIGCOMM °25, Coimbra, Portugal

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1524-2/2025/09

https://doi.org/10.1145/3718958.3754353

248

Max op rate (1 QP) Tail latency at 1 Mops/sec
20 =
g gg r \\ Falcon
% 15 = \ = =-Pony Express
=
Q. c 99 - \
o 10 - 8 N
© o 999 - N
Z & S
X - 99.99 - ~
0 - 99.999 [ol [N | oSl
Pon Falcon 1 10 100 1000
Expreﬁs 8-byte read latency (us)

Figure 1: Comparing the limits of SW-based stacks

the networking stack must deliver this performance while consum-
ing minimal host CPU, so that the CPU may be used by applications.

Hardware-accelerated transports, where the transport datapath
is implemented in hardware, can meet these stringent requirements
in ways that transports implemented in software cannot. By taking
advantage of dedicated hardware resources, these transports can
simultaneously provide high bandwidth and operation rates, and
keep latency low without incurring significant CPU core usage.
The Falcon transport we present in this paper achieves a 5x higher
operation rate and 10X lower tail-latency than Pony Express [33],
a highly-optimized software transport (Figure 1).

Our goal is to develop a transport that combines hardware-
accelerated performance with the generality of software transports
that support heterogeneous workloads over diverse network condi-
tions. As a usage setting, we imagine a datacenter network based
on commodity Ethernet that connects any mix of compute servers,
storage, and accelerator slices, and which supports mixed workloads
over industry-standard interfaces such as IB Verbs and NVMe.

Current hardware transports like RDMA over Converged Ether-
net (RoCE) are better suited for specialized use cases than general-
purpose datacenter use. Derived from RDMA on Infiniband net-
works, RoCE assumes infrequent packet loss. It is typically used
with Priority Flow Control (PFC), a complex feature with deploy-
ment challenges [24]. Without PFC, RoCE is typically deployed in a
fully-provisioned network with specialized switches (e.g., Spectrum-
X Adaptive Routing [10]), limiting its use to dedicated backend
networks. Technologies like NVLink [21] and Inter-Chip Intercon-
nect [27] provide dedicated hardware transports for GPU and TPU
traffic. They provide islands of high performance that are difficult to
scale and unsuitable for general-purpose workloads. Furthermore,
hardware transports also lag software-based transports in terms of
innovations for reliability, congestion control and multipathing.

In this paper, we present Falcon, a hardware-accelerated trans-
port that we have implemented with RDMA and NVMe in a 200G
NIC for use in datacenters. Falcon leverages proven transport tech-
niques to achieve high performance and efficient operation in
lossy Ethernet networks, including Swift [29], RACK-TLP [17],
Snap [33], Protective Load Balancing [41], Protective Reroute [53],
Carousel [45] and multipathing.

https://doi.org/10.1145/3718958.3754353
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3718958.3754353
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3718958.3754353&domain=pdf&date_stamp=2025-08-27

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

i Host Ap;;lications s
NIC RDMA NVM Custom)
Express ULP
ULP ULP ULP . .
FALCON Mapping||. .][Mapping .. || Mapping || o ULP Operation Mapping,
Layer Layer Layer Flow Control

Execute
Congestion Control &

Multipathing Algorithms Transaction Layer
o
Falcon Adaptive I 0
Engine Packet Delivery Layer | .

¥ Network |

oResource Management,
Ordering, Scheduling

Reliability, Multipathing,
oCongestion Control
Gating

Figure 2: Falcon hardware transport layers

Our contribution is the first hardware transport that supports
multiple Upper Layer Protocols (ULPs) and heterogeneous appli-
cation workloads in general-purpose Ethernet datacenter environ-
ments. Falcon delivers excellent performance under diverse network
conditions (including loss, reordering and path diversity) with a
datapath implemented entirely in hardware. It does not need spe-
cialized switch features like PFC or Adaptive Routing. And it excels
across both specialized workloads (e.g., ML traffic) and general-
purpose workloads (e.g., server incast). We achieve this result with
the design choices seen in Figure 2:

(1) Layered design with a simple transaction interface that supports
IB Verbs, NVMe, and other ULPs. The ULP operations are mapped to
transactions with flexibility for variable-length operations, ordering
semantics, and ULP-specific error-handling. This layering reduces
feature redundancy across ULPs and NIC hardware complexity.

(2) A lower layer of reliable packet delivery with delay-based
congestion control and multipath load balancing. Both work well
together and have hardware support for fine-grained traffic pacing,
retransmissions using Selective Acknowledgements, and round-trip
time measurements.

(3) NIC hardware resource admission with backpressure for retrans-
missions, operation ordering, and transaction error handling. This
enables line-rate operation in a resource-constrained environment
without performance cliffs under O(100K) connections.

(4) Transport feature programmability via the Falcon Adaptive
Engine (FAE). It strategically partitions functionality between HW
for line-rate performance and SW for flexible event processing.

We demonstrate that Falcon delivers peak performance of 120
Mops/sec for RDMA and NVMe applications with near-optimal
operation completion times, even under network congestion. Com-
pared to CX-7 RoCE, Falcon achieves up to 8x lower completion
times and up to 65% higher goodput under lossy conditions.

2 REQUIREMENTS AND WHY EXISTING HW
TRANSPORTS FALL SHORT

To meet the demands of diverse applications and real-world net-
work conditions, we find that a hardware transport must fulfill the
following five key requirements:

(R1) Predictable Performance: Ensure near-optimal completion times
for network transfers. This is crucial for datacenter applications.
(R2) Adaptability to Diverse Networks: Maintain predictable perfor-
mance across network deployments, including those with oversub-
scription, multi-tenancy, and heterogeneous topologies.

(R3) Robustness under stress: Handle high bandwidth, operation
rates, and low latency without performance cliffs. Do so even when

249

Singhvi et al.

under stress from factors such as many connections, out-of-order
network packets, and retransmissions.

(R4) Support for Standard Interfaces: Support IB Verbs and NVMe
interfaces without requiring application modifications. Maintaining
compatibility with the existing ecosystem of applications optimized
for these interfaces is essential.

(R5) Operational Ease: Allow for fixing performance issues and
evolution of the transport components without necessitating new
hardware.

The dominant hardware transport, RoCE [24], struggles to meet
these requirements. RoCE supports the IB Verbs interface (though
not NVMe in R4), but it is ineffective at handling lost and reordered
packets for high application performance (R1-R3). Fundamentally,
RoCE inherits three key limitations from the lossless nature of
RDMA-over-Infiniband that do not scale well to lossy networks.

First, RoCE does not support modern loss recovery. RoCE initially
relied on Go-Back-N style loss recovery, even for single packet
losses. Proprietary extensions now enable Selective Repeat (SR),
but with significant restrictions. We find that SR is supported for
RDMA Writes and Read Responses, but other operations remain
limited to Go-Back-N recovery. The SR mechanism, which sends a
Negative Acknowledgment for each out-of-order packet, can lead
to slow, imprecise recovery and high tail latency (see §6.1.1). And
when using SR, loss typically leads to out-of-order packet delivery,
which violates IB Verbs semantics.

Adding state-of-the-art loss recovery like Selective Acknowl-
edgments (SACK) to RoCE is non-trivial while also satisfying IB
Verbs ordering semantics. RoCE NICs lack resources like packet
buffers. To maintain ordering, a RoCE receiver drops out-of-order
packets following a loss. This limits its ability to precisely signal
missing packets to the sender. To implement precise loss signaling
like SACK, RoCE NICs would require substantial changes, such
as adding on-NIC packet buffers on the receive side or modifying
the ordering semantics. Thus, for many use cases, Priority Flow
Control remains necessary to avoid losses.

Second, RoCE does not have protocol support for multipathing.
This causes complications when it is used with Adaptive Routing
at switches to utilize all network paths (as is common in ML back-
end networks). We find that tolerating the natural reordering of
multipath adversely impacts loss recovery. This leads to poor per-
formance (see §6.1.1) so PFC is often used to avoid loss. Reordered
packets are also delivered out-of-order, which is problematic for
general-purpose use because it violates IB Verbs semantics.

Third, RoCE does not integrate congestion control with the dat-
apath. Congestion control is implemented as an add-on, relying on
out-of-band probes [6] to gather congestion signals. This separation
makes its congestion response sluggish.

Additionally, RoCE NICs handle timeouts, errors and exceptions
in firmware. This makes it susceptible to performance cliffs under
stress, falling short of R3. We present RoCE’s performance under
losses, reordering, and network congestion in §6.

3 OVERVIEW & DESIGN PRINCIPLES

We first provide an overview of Falcon, then describe its built-in
protocol specializations and the design principles that enable its
hardware implementation. Requirements R1-R2 ensure good end-
to-end application performance, while R3-R5 guide the hardware
implementation for peak operation (op) rates, low latency and
compatibility with existing interfaces. Table 1 summarizes how the

Falcon: A Reliable, Low Latency Hardware Transport

requirements defined in §2 are met with the design principles we
describe below.

3.1 Falcon Overview

Falcon is a connection-oriented transport protocol providing end-
to-end reliability for various upper-layer protocols (ULPs) like
RDMA and NVMe, as illustrated in Figure 2. Falcon consists of
four components. The ULP mapping layer translates operations
from upper-layer protocols (like RDMA Reads and Writes) into Fal-
con connections, and handles flow control. The Transaction layer
(TL) provides a request-response interface to upper-layer protocols,
managing on-NIC resources, scheduling, and ordering. The Packet
Delivery layer (PDL) enforces delay-based congestion control (CC),
paces traffic with the Timing Wheel, and ensures rapid loss recov-
ery with SACK, all with multipathed connections. A programmable
Falcon Adaptive Engine (FAE) works in conjunction with the PDL to
implement CC and multipath load balancing. This programmability
enables adaptation in deployments while preserving high-speed
performance. Falcon can operate with inline encryption for end-to-
end security. For this purpose, Falcon can utilize protocols such as
the Paddywhack Security Protocol [2] (PSP) or IP-SEC [28] for au-
thentication and encryption of data transferred over a connection.
Applications do not directly interact with Falcon but instead use
standard APIs provided by the ULPs like RDMA and NVMe. These
ULPs communicate with Falcon through a request-response trans-
action interface, with necessary adaptations (see the ULP mapping
layer in Figure 2) to map their operations to Falcon transactions.
Falcon’s layered design mirrors how Pony Express [33] manages
interactions with applications, internal resources, and network be-
haviors. Falcon’s Transaction and Packet Delivery layers are analo-
gous to Pony Express Op and Reliability layers. A key difference is
that Pony Express relies on ULPs for ordering and performs seg-
mentation in its Op layer, while Falcon’s Transaction layer manages
ULP operation ordering, with segmentation handled by the ULPs.

3.2 Predictable Performance in Diverse Networks

Many approaches in the literature aim to provide predictable net-
work performance (Table 5 provides a summary). Most do not meet
our requirements as they rely on assumptions that do not hold in
real networks. Receiver-driven schemes, like Homa [37], NDP [25],
EQDS [39] and pHost [22], assume no over-subscription within
the network, which is often untrue. Load balancing schemes like
packet spraying require homogeneity in network paths and traffic
use, including WAN traffic, which doesn’t hold in real networks.
Our first design tenet is:

D1. Delay-based congestion control and Multipath load balancing:
these come from SW transports (Pony Express [33]/TCP) whose
design and production experience informed Falcon. Delay-based
CC (Swift [29]) utilizes hardware-assisted per-packet round-trip
time (RTT) measurements to modulate the transmission rate.
Multiple HW/SW timestamps decompose latency across the
host, NIC, and network fabric. This enables a fast and precise
congestion response. Delay-based CC also alleviates congestion
in end-hosts/NICs, like PCle and Memory Bus congestion [12].
Additionally, fine-grained traffic pacing via the Timing Wheel
(Carousel [45]) improves fairness across tenants, and shortens
network queues under high-degree congestion (when the number
of flows exceeds the bandwidth-delay product in packets).

Multipath load balancing is used by our SW transports to lever-
age the many paths in datacenter topologies. Multipathing uses

250

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

Requirement

Design Principle

R1,R2: Predictable Performance
under Diverse Networks

R3: Robustness and no
performance cliffs

R4: Standard ULPs, multiple
ULP support

R5: Rapid Iterations and
Operational Ease

D1: Delay-based CC and

Multipath load balancing (§6.1)

D4: Hardware resource admission,
Backpressure, Error-handling (§6.2)
D2: Layered Design

D3: Simple Interface to ULPs (§6.3)
D5: HW-assisted Programmable
Engine (§6.2)

Table 1: Mapping Requirements to Design Principles

[p99 T p99 NN p50 NI p50
@ Transport MP Il
© Multiple Conn. I |
0.0 0.2 0.4 0.6 0.8 1.0
@ Transport MP NI
© Multiple Conn. IIIININENENNN =

0.0 0.2 0.4 0.6 0.8 1.0
Op latency (normalized)

8 MB 64 KB

Figure 3: Multipathing benefits ML Workloads

multiple flows within each connection. Each flow may traverse a
different network path. Each flow rate dynamically adapts to path
congestion, so that less congested paths draw more traffic from
the connection. This just-in-time scheduling, combined with flow
repathing (Protective Load Balancing [41]) to shift traffic away
from congested paths, minimizes end-to-end latency. Individual
flows use Protective Reroute [53] to mitigate the impact of network
outages. They change the IPv6 flow label on their packets when an
outage is detected, causing switches to choose a different network
path. Figure 3 demonstrates the improvements in op latency of
transport-level multipathing in Pony Express for an ML workload,
compared to the application naively creating multiple connections.

For optimal application performance, loss recovery needs to
work efficiently despite the packet reordering inherent to multi-
path load balancing. Falcon leverages Selective Acknowledgements
(SACK) [35] for efficient retransmission of only lost packets. We
further adapted RACK-TLP [17] (Recent Acknowledgment - Tail
Loss Probe) for Falcon’s hardware because time-based differentia-
tion between packet loss and reordering speeds recovery, especially
for losses at the end of data bursts.

3.3 Hardware Design: Challenges and Principles

Building a hardware transport like Falcon presents several chal-
lenges. We had to simultaneously deliver high peak performance
for HPC and AI/ML applications and predictable sustained perfor-
mance in warehouse scale deployments. Achieving peak op rates,
bandwidth, and low latency is key — not just in the fast path when
packets arrive perfectly in order, but under network conditions
that create out-of-order packets, retransmissions, timeouts and
application error conditions. These complications are common in
production networks. At the same time, sustained performance that
avoids cliffs with O(100K) connections is also crucial. These chal-
lenges necessitate careful consideration of hardware constraints of
on-die space, buffers, power, and involve addressing bottlenecks
like connection cache misses and handling exceptions/errors effi-
ciently in hardware. Unlike software stacks, which can elastically
use CPU cores on the machines, hardware implementations must
optimize resource utilization and performance within the NIC’s

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

pre-determined resources. We list the design principles that enabled
Falcon’s high-performance hardware implementation.

D2. Layered Design: We made a clear division of responsibilities
between Falcon and ULPs with the aim of reducing feature duplica-
tion across ULPs. This approach reduces NIC hardware complexity
by centralizing core transport functions within Falcon. Falcon’s
Transaction and Packet Delivery layer split further divides respon-
sibilities for independent implementation and evolution.

D3. Simple interface supporting multiple ULPs: Falcon’s multi-
ULP support is enabled by a simple transaction interface, wherein
each transaction consists of a request and corresponding response.
It aligns well with common ULP operations. This design facilitates
adding new ULPs, including those with custom ordering modes
and error notification requirements.

D4. NIC hardware resource admission with backpressure, and error-
handling: A guiding principle was to eliminate performance cliffs
caused by out-of-order network packets and error conditions. To
do so, Falcon utilizes dedicated on-chip memory and hardware-
based retransmissions that support IB Verbs ordering semantics.
A Falcon receiver absorbs out-of-order packets using its on-chip
packet buffers, which are sized based on bandwidth-delay product.
It signals missing packets to the sender, which performs precise
retransmissions — Falcon is able to do so for all IB Verbs operations
without violating their semantics. Per-connection backpressure
provides isolation across connections and keeps on-NIC resource
occupancy low. Falcon further avoids performance cliffs caused
by various error scenarios by implementing exception handling in
hardware. The cost of integrating the Falcon IP into the NIC has
been minimal: 5-6% in terms of die size and 3-4% in terms of power.

D5. Hardware-Assisted Programmable Engine: One of our guiding
principles was to enable rapid iteration of congestion control and
other transport features in software by decoupling the algorithms
from the datapath. To avoid HW complexity and inflexibility, our de-
sign separates the management of transport features (implemented
as a programmable engine running as software on a general pur-
pose CPU) from the mechanism (implemented in the HW path).
Table 3 shows the split between hardware, software, and interface
signals for various transport features.

4 DETAILED DESIGN

We now detail the components of Falcon (Figure 2). PDL and FAE
together ensure reliability (§4.1), congestion control (§4.2), and
multipathing (§4.3). TL supports multiple ULPs with flexible order-
ing and error semantics (§4.4), manages NIC resources (§4.5), and
isolates connections (§4.6).

4.1 Reliability

Falcon ensures end-to-end reliability from ULP payload transmis-
sion to ULP reception. Its primary goal is rapid recovery from
packet drops without excessive retransmissions, regardless of net-
work conditions like reordering or loss. Similar to Pony Express,
Falcon’s receivers use bitmaps to precisely communicate received
and missing packets to the sender. We chose bitmaps over TCP’s
variable-length Selective Acknowledgment (SACK) blocks for easier
hardware processing. Like TCP, Falcon employs RACK-TLP [17] to
differentiate packet loss from reordering and quickly recover from
losses at the end of transmission bursts. We detail the roles of the
receiver and sender PDL in achieving reliable delivery.

Receiver. The receiver’s PDL tracks received packets by Packet
Sequence Numbers (PSNs) with a bitmap-based Rx window. This

251

Singhvi et al.

bitmap is piggybacked on outgoing Falcon ACKs. It helps the sender
identify lost packets and trigger retransmissions (as we see next).
The bitmap size balances hardware implementation feasibility and
ACK overhead; 128-bit bitmaps worked well for our use cases. The
receiver accepts out-of-order packets, even those outside the Rx
window, provided sufficient on-NIC resources are available.

Sender. On receiving an ACK, the sender employs the Recent Ac-
knowledgement (RACK) heuristic to identify packets for retrans-
mission. It analyzes the ACK’s timestamp and the accompanying
Rx bitmap as follows: Packets marked as received are ignored. Out-
standing packets transmitted after time xmit_ts are also ignored to
ensure RACK doesn’t trigger retransmissions until sufficient time
(~RTT) has elapsed. Packets sent before xmit_ts are retransmitted
if their elapsed time exceeds the rack_rto duration. This heuris-
tic applies only to packets within the Rx bitmap’s range, as the
reception status of packets beyond it is unknown to the sender.
To handle tail losses, the sender also uses the Tail Loss Probe
(TLP) heuristic. After a period of inactivity (e.g., due to tail losses
or lost ACKs), the sender retransmits a probe packet, specifically
the lowest unacknowledged PSN. This probe prompts the receiver
to generate an ACK. On receiving this ACK, the sender uses the
RACK heuristic to trigger early retransmissions if warranted.

FAE Role. It calculates loss recovery parameters (e.g., retransmis-
sion and TLP timeouts) based on network conditions. This allows
Falcon to adapt the aggressiveness of recovery to a wide range of
network scenarios.

4.2 Programmable Congestion Control

Falcon implements congestion control for each connection by split-
ting responsibility across the PDL and FAE. FAE implements the
CC algorithms that compute congestion windows based on the CC
signals, while the PDL is responsible for measuring CC signals and
enforcing the computed windows via the connection scheduler and
Timing Wheel. Such a division of labor allows the CC algorithm
to evolve via the programmable FAE without changing the PDL,
which implements key per-packet operations efficiently. Falcon’s
CC algorithm is a variant of Swift [29] adapted to handle both fabric
and NIC congestion via two congestion windows—fcwnd (fabric
congestion window) and ncwnd (NIC congestion window)—with
the effective window being the minimum of the two.

Handling Fabric Congestion. We use fabric delay as the conges-
tion signal. To accurately estimate fabric delay, Falcon relies on
precise hardware timestamps. t; is the time at which the packet
is sent on the wire, and is carried in the packet header. t2 is when
the packet arrives at the remote NIC. The remote NIC stores #; and
t of the latest packet for the connection. #3 is the time when the
remote NIC sends an ACK, and t4 is when it arrives at the local NIC.
The ACK header carries t3 along with the latest #; and t3 values, so
the local PDL has all the timestamps needed to compute the delay
as (t4 — t1) — (t3 — t2) without synchronized clocks.

Handling Rx NIC Congestion. Falcon CC explicitly handles NIC
pipeline congestion, particularly for Rx buffers, which can become
exhausted under two scenarios. First, ordered connections that
experience losses buffer OOO packets. This leads to buffer buildup
while awaiting retransmissions of lost packets. Second, end-host
bottlenecks (PCle, IOMMU or memory [12]) at the receiver can
cause the NIC’s host interface (see Figure 7) to backpressure the ULP,
which then backpressures Falcon. This leads to buffer buildup until

Falcon: A Reliable, Low Latency Hardware Transport

FS/t\E f N Connection TL A
ore per-flow state an
compute fcewnds using Multiple Flows per Connection PDL
per-flow signals | 20 o1) —

fewnd per flow I

open window

Unacknowledged Ii

packets per flow
Assign flow for each packet based on per-flow
open window (fewnd - unacked packets)

(
(

. > Selects a connection for packet transmission.
@ Connection Scheduler Enforces per-connection fcwnd and ncwnd.

@ Flow Scheduler ==

Figure 4: Congestion-aware Multipathing in Falcon.

packets received from the network can be forwarded to the ULP.
Falcon uses NIC Rx buffer occupancy, a readily available hardware
counter, as the NIC congestion signal. ACKs carry this signal back
to the sender which uses it for ncwnd modulation. This prevents
excessive packet drops due to the lack of NIC Rx resources.

4.3 Multipathing

Multipathing is a core design element that enables Falcon to achieve
high per-connection performance by allowing a single connection
to use multiple paths. Our key insight is to use these paths in a
congestion-aware manner: favoring less-congested paths lowers op
latencies and sustains higher throughput. Falcon aims to transmit
each packet on the best path to the destination. This goal requires
two decisions: selecting the set of paths for a connection, and as-
signing a specific path to each packet. Both decisions are a natural
fit for the PDL, letting it isolate the multipathing mechanics from
the upper layers.

As shown in Figure 4, Falcon maintains an indexed list of flows
per connection. Each flow is assigned a unique IPv6 Flow Label that
is set on outgoing packets of the flow. This Flow Label also includes
the flow’s index to facilitate tracking per-flow state. Switches hash
on the flow label in addition to the ECMP/WCMP 4-tuple, so that
each flow maps to a potentially different network path [41].

Although flows share the connection’s PSN space (§4.1), Falcon
tracks congestion state for each individual flow and computes a
dedicated fcwnd (§4.2). The PDL: (1) enforces a connection-level
fewnd computed by aggregating the per-flow fcwnd values, and
maps packets to flows based on the flow-level fewnd values. This
design embodies a classic accuracy-complexity trade-off. At one
extreme, PDL could simply spray packets across flows oblivious of
per-flow congestion, requiring simpler HW. The other extreme, en-
forcing fewnd per flow with separate PSN spaces, would introduce
additional HW complexity. We find that performing CC by combin-
ing connection-level fcewnd gating and flow-level fcwnd scheduling
offers a good balance. We now describe these mechanisms in detail
by tracing events during a network round trip.

Congestion Control. The PDL transmits a packet when the con-
nection congestion window (minimum of newnd and fewnd) opens
up. When ready, the PDL selects the flow with the largest open
window, defined as the difference between the flow fcwnd and the
number of unacknowledged packets for the flow, and applies the
corresponding Flow Label. The packet then travels along the net-
work path dictated by its Flow Label to reach the receiver. The
receiver extracts the flow index from the Flow Label and updates
per-flow congestion metadata, such as timestamps. It also imple-
ments per-flow ACK coalescing. When an ACK is generated for a

252

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

ULP Operation ‘ Falcon Transaction
RDMA | WRITE, SEND/RECV | Push

RDMA | READ, ATOMICS Pull

NVMe | Read Pull

NVMe | Write Push and Pull

Table 2: RDMA and NVMe ops mapped to Falcon transactions.

flow, the PDL populates it with the congestion metadata specific
to that flow. Upon receiving the ACK packet, the PDL identifies
the flow using the flow index carried in the ACK. It then extracts
per-flow congestion metadata from the ACK, with the exception of
the number of acknowledged packets for the flow. This is because
a single ACK may acknowledge PSNs from multiple flows for the
connection. To accurately calculate acknowledged packets per flow,
the PDL uses its internal state which tracks the flow index associ-
ated with each unacknowledged packet. PDL sends these per-flow
congestion signals to FAE.

FAE Role. Leveraging the per-flow congestion signals provided
by PDL, FAE computes the flow’s new fcwnd by executing the CC
algorithm. The updated fcwnd is sent back to the PDL for enforce-
ment, as previously described. Beyond CC, FAE also implements
PLB [41] and PRR [53] to determine the Flow Label to use for each
flow based on path state. To facilitate these computations, FAE
maintains essential algorithm state per flow.

Reliability. Packets within a single connection share a common
PSN space, regardless of the flow they traverse. An implication
of this design choice is that packets across flows may arrive out
of PSN order. Falcon’s reliability mechanisms (§4.1) handle these
conditions well by robustly disambiguating reordering from losses.
The Rx bitmap in an ACK allows tracking acknowledged packets
across flows, i.e., if a packet or an ACK is lost for one flow, the
Rx bitmap from ACKs for other flows will still inform the sender
of the aggregate state at the receiver and trigger SACK-based loss
recovery appropriately. Moreover, Falcon implements RACK-TLP
per flow to avoid spurious retransmissions due to reordering.

4.4 Support for Multiple Upper Layer Protocols

Falcon’s TL interfaces with multiple ULPs, which in turn expose
well-defined APIs (e.g., IB Verbs in case of RDMA) that are used by
applications. We discuss this interface and how it provides flexible
ordering and error semantics.

Interface to ULPs. Falcon supports multiple ULPs through a well-
defined request-response transaction interface. Each Push or Pull
transaction comprises a request and its corresponding response. In
both kinds of transactions, the requester Falcon sends a request
packet to the responder Falcon, which returns a response packet.
The key difference is the direction of data flow: Push is used for op-
erations (ops) where the requester is sending data to the responder
(e.g., writes). Pull is used for ops where the requester is receiv-
ing data from the responder (e.g., reads). Table 2 summarizes the
mapping of ULP ops to Push/Pull transactions.

Two questions need to be addressed by the design of the trans-
action interface: (1) Should the interface be oblivious to the type
of transaction being performed by the ULP? and (2) What is the
granularity of the interface?

Transaction Type Awareness. Unlike TCP, which employs a byte
stream-oriented model, we designed the Falcon interface to be
aware of the transaction type to avoid deadlocks due to finite NIC

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

Initiator Target
Initiator Falcon Falcon Target
SW Posts
Write Req. | Push Req. 1 Push Data 2
Push Req. 2 (RSN=2, PSN=301)
Push Req. 1
Push Write M 1
(RSN=7, PSI?E ! Push Req. 2 r-lte emory
=300) Write Memory 2
Push Comp. 1
Push Comp. 2
ACK (PSNs=301, 302)
Push Comp. 1|« |
Push Comp. 2|
HW Returns
Write Comp,|
RSN = Request Sequence Number PSN = Packet Sequence Number Req.=Request Comp. = Completion

Figure 5: RDMA Write Operation. To initiate an RDMA Write (larger than
one MTU), the software posts a request, prompting the NIC’s RDMA ULP to issue
two Falcon Push Requests, each within the MTU limit. The initiator transmits two
push data packets (RSN=1 and 2) to the target. The PDL assigns them PSN=300
and 301. These packets arrive out of order due to network reordering. The target’s
Transaction layer correctly orders the two packets based on their RSN before
delivering them to the NIC’s RDMA ULP. The ULP executes the memory writes
and returns Push Completions to Falcon, which then triggers a single ACK
packet acknowledging both push data packets. Upon receiving the ACK, the
initiating Falcon connection passes two completions to the RDMA block, which
then generates a write completion and posts it to the completion queue.

resources (§4.5). Being type-aware enables the TL to assign re-
quests and responses from the ULP to separate PSN spaces to avoid
a request-response deadlock (§A.1). Additionally, it helps with per-
formance - it enables Falcon to (a) accurately enforce congestion
control based on packet types (as Pull Responses are not subject to
ncnwd because the requester Falcon has reserved resources to land
the requested responses; see §4.5); and (b) schedule requests flow-
ing in one direction (or responses in reverse) in order by assigning
them to the appropriate request-response scheduler queue.

MTU Granularity. With Falcon, we decided that transactions can
be no more than one MTU in length (e.g., a large READ op is broken
into multiple MTU-size Pull transactions). This choice simplifies
the hardware as each request maps to a single response. Also, MTU-
sized transactions enable fine grained management of hardware
resources, allowing arbitration based on application priorities.

Flexible Ordering Semantics. Each Falcon connection can be
configured to be either ordered or unordered. The ordered mode
reflects the IB Verbs specification ordering, which requires in-order
data placement and in-order completions. This mode enables legacy
RDMA applications to run atop Falcon. Unordered mode, as the
name suggests, corresponds to out-of-order (OOO) data placement
with OOO completions. It caters to modern datacenter applications
that issue independent ops.

To enforce ordering when required, the TL relies on each transac-
tion being uniquely identified by a request sequence number (RSN),
and orders packets per the RSN. (The PSN alone is not sufficient
to ensure ordering; see §A.2). Crucially, the on-NIC resources de-
scribed in §4.5 enable Falcon to accept OOO packets, buffer them
while awaiting earlier packets, and then deliver them in order to the
ULP. With unordered connections, the TL sends packets to the ULP
as they arrive. Additionally, weakly ordered semantics (OOO data
placement with in-order completions), which reflects the iWARP
model [43], can be achieved by the ULP doing completion ordering
atop an unordered connection. Tying it together, Figure 5 illustrates
the flow of an RDMA Write op over an ordered Falcon connection.

253

Singhvi et al.
'd 2\ (-
Packet Packet Contexts||| Buffers
Contexts | Buffers |:>
RX RX
Contexts||| Buffers
. J AN /

1@

{ } [} [I:equest } [ﬁequest }
(IHOQ (IHOQ <:| (Request 7 (Request 7
L J L J @ \LResponseJ @esponsejj

Figure 6: Falcon Resource Carving to avoid Deadlocks

Enhanced Error Notifications. Falcon supports existing ULP er-
ror handling semantics, including the Receiver Not Ready (RNR)
indication that allows a target ULP to specify a retry time for a trans-
action. Falcon handles RNR retries transparent to the ULPs. Falcon
also supports an enhanced fine-grained error notification, Complete
in Error and Continue (CIE). It allows more graceful handling of
errors like RDMA memory protection errors that do not need to be
fatal. The target ULP returns a CIE indication with an error code,
and Falcon transmits a CIE NACK to the initiator, which completes
the initiator’s transaction with an error. Subsequent transactions
continue to finish successfully.

4.5 Managing Hardware Resources

Falcon introduces on-NIC resources to natively support OOO packet
arrivals and ensure reliability for all its ULPs. Falcon uses two kinds
of hardware resources: contexts and buffers. Contexts hold fixed-
size metadata (e.g., sequence numbers for ordering and reliability,
resources held, packet headers, etc.). Buffers hold variable-size meta-
data (e.g., Scatter Gather Lists) and the actual packet payload.
These resources are finite and sized to meet the op-rate and band-
width targets of a given Falcon generation, while allowing slack for
RTT jitter or variation. The TL needs to carefully manage Falcon
resources to avoid deadlocks that can occur in request-response
protocols. We now describe resource carving and the reserve-use-
release lifecycle which are essential to protocol forward progress.

Resource Carving. Resources in Falcon are carved into multiple
sub-pools based on three intuitive principles to avoid deadlocks
(Figure 6). First, the resources are carved between packets to be
transmitted (Tx) and received (Rx) so that they can be allocated
independently. Not doing so can lead to scenarios where all the re-
sources are used by outgoing packets, preventing incoming packets
from being accepted, or vice versa, leading to no forward progress.
Second, the Tx and Rx resources are further divided between re-
quests and responses so that both of them can make independent
progress. Not having this separation can lead to scenarios wherein
outstanding requests prevent responses from being sent as they use
up all the resources or vice versa. Lastly, the Rx request resource
pool allows only head-of-line (HoL) requests to be admitted beyond
a resource occupancy threshold. In case of ordered connections, a
request is HoL when its RSN is one more than the RSN of the last
in-order request received; recall that order is determined by RSN
(§4.4). On unordered connections, all requests are considered to be
HoL. Not admitting HoL requests can lead to a situation where all
the resources are occupied by non-HoL requests and the protocol
makes no forward progress for ordered connections.

Falcon: A Reliable, Low Latency Hardware Transport

Feature Hardware Mechanism

Interface Signals

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

Software (FAE) Tasks

Reliability, Loss Recovery
Congestion/Flow Control

ACK Bitmap, RACK, TLP
Sliding Windows, Pacing

Timestamps, Rx Buffer Level
#hops, ECN, RTO, CSIG [42]

Compute RTO, RACK timeout, TLP threshold
Compute fcwnd, ncwnd, IPG, target delay scaling

Multipathing, PLB [41], PRR [53] | Path-aware flow scheduler Flow Labels Flow Label (re)assignment and per-flow CC tasks
Resource Isolation Dynamic Thresholds Resource Occupancy Compute DT alpha based on dynamic factors
Pure ACK Generation Ack Request Bit in Header Ack Request Rate Decide when/how to set the AR bit

Table 3: Split of responsibilities between hardware and software in Falcon

Resource Lifecycle. Each transaction holds various resources dur-
ing its lifetime. On receiving requests from ULP, the initiator Falcon
reserves not only the Tx resources for the request, but also Rx re-
sources for the corresponding response (completions for Push; Pull
Response for Pull). This approach naturally eliminates the forma-
tion of reverse path incasts as the initiator Falcon sends out requests
only if it can land the corresponding response. More importantly,
doing so also ensures that incoming HoL responses always have
resources reserved, and thus ensures that deadlocks due to resource
unavailability for HoL responses do not occur. On the other side,
the target Falcon uses Rx (Tx) resources when requests (responses)
arrive from the network (ULP). Rx resources are released once re-
ceived packets are delivered to ULP. Tx resources are released when
the ACK corresponding to the transmitted packet is received.

When Falcon runs out of resources to handle new transactions
from ULPs, it backpressures them to not send any additional trans-
actions via an Xon/Xoff flow control interface. Resource NACKs
are generated by Falcon when there are not enough resources to
accept incoming network traffic.

4.6 Ensuring Isolation

Falcon provides isolation between connections. Without isolation, a
connection making slow progress (and thus holding onto resources
longer) could deprive other connections of resources, hindering
their performance. Isolation is implemented in Falcon rather than
the ULPs, since (a) it has direct visibility into resource usage and
connection progress, both of which are required to ensure isolation,
as we discuss below; and (b) not doing so would require ULPs to
have more visibility into Falcon and unnecessarily replicate the
isolation logic in each ULP.

We equipped the TL to exert fine-grained backpressure to ULPs
via a per-connection Xon/Xoff flow control interface whenever
a connection exceeds its resource usage threshold. This enables
Falcon to backpressure slow connections, preventing them from
sending transactions, and thus allow other connections to continue
making progress. Falcon calculates the backpressure thresholds dy-
namically and takes a similar approach to the Dynamic Thresholds
(DT) algorithm that is commonly used to manage datacenter switch
buffers [18]. Similar to DT, Falcon calculates the threshold T, for
a connection ¢ as T, = a. - FreeResources. The a, parameter of a
connection determines its limit relative to other connections - a
larger value implies a larger share and vice-versa.

FAE Role. Unlike DT, wherein «a is static, FAE calculates a, for
a connection dynamically as a. = f; - @, where f. is a congestion-
aware variable proportional to fcwnd and ncwnd, but inversely
proportional to fabric delay and buffer occupancy. For example, in
the case of fabric (host) congestion, if the fewnd (ncwnd) is low
and/or the fabric delay (buffer occupancy) is high, it indicates the
connection is making slow progress and requires fewer resources.
Falcon scales down . accordingly to decrease the connection’s
backpressure threshold relative to a congestion-free connection.

254

5 BUILDING A SCALABLE HW TRANSPORT

We describe our experience implementing Falcon transport along
with some of the notable choices we made.

5.1 Building and Integrating Falcon into NICs

Generic FNIC Logic Falcon Logic
Protocol Engines Packets Timestamps
1
Q 1 —~
o O
 NMe =3 ¢y ! b 3
. z < 4 ©
g S 3 £ =
S g 8 I ge¢—— S~ & ez
4‘-:1 b © ! 3 w ™ > X
k7 8 % Lo = _:’ 3 © = A“6 2 5
S T EHrovAa 23 ¢ [2 5 3 S H
= = = = B E=] © 5 |@
ag 17 ! Q Qo z c |2
o o N i o I = 5
o T [s 2 g £
g ! > E> 5> 5>E
a < — =) 2
“— LAN Il £ i
! Pacing £

Figure 7: Falcon Implementation in a NIC

We built Falcon as an independent HW block that could be in-
tegrated into vendor foundational NICs (FNICs) or Infrastructure
Processing Units (IPUs). We have integrated the Falcon block in
an Intel E2100 200Gbps IPU, and have scaled the Falcon block for
400Gbps and 800Gbps speeds. Falcon is integrated as an IP block
on the same die as the rest of the NIC. Using an ASIC implementa-
tion allowed Falcon to deliver on its peak op rate and low latency
requirements. Alternatives such as FPGA-based implementations
were not pursued due to its higher total cost of ownership (TCO)
and worse performance in terms of op rate and low latency.

Figure 7 shows Falcon HW integrated into a generic FNIC, in-
terfacing with ULPs on one side and packet processing block on
the other side. Implementing Falcon in a NIC requires additional
changes beyond the integration. Changes within the ULPs are done
to map their ops to Falcon transactions. Given Falcon also relies on
a Timing Wheel (TW) to potentially pace packets, we introduced a
standalone TW block; alternatively it can be implemented within
Falcon HW itself. Falcon also relies on timestamping of packets
close to the Ethernet port to enable precise fabric RTT measure-
ments. Typically this timestamping function is implemented within
the inline encryption block (using the IV field of the PSP [2] or IP-
SEC [28] protocols). Figure 8 shows the Falcon HW block diagram,
featuring distinct transmit and receive pipelines with shared control
logic—a typical structure for HW transport implementations.

5.2 Notable Implementation Choices

We highlight aspects of Falcon’s hardware implementation that
deviate from conventional wisdom. Our goal is to ensure that the
implementation is not susceptible to performance cliffs so it can
cater to warehouse scale datacenter applications that often involve
O(100K) communicating processes spread across O(10K) machines;
performance of such applications is very sensitive to communica-
tion tail effects [20].

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

On-NIC Resources. Traditionally, on-chip memories are avoided
to the extent possible, given their area and power implications. How-
ever, with Falcon, we had to support packet buffering on the receive
path for reordering purposes, which required O(BDP) worth of re-
sources. To meet cluster-level requirements, the BDP for a 200Gbps
IPU and 50us RTT setting (typical of intra-cluster RTTs) is 1.2MB.
This grows to 2.4MB for 400Gbps and 4.8MB for 800Gbps. We find
that with current process technologies (such as TSMC N7, N5 or
N3) the packet buffer requires 1-2mm? of die area. This is <1% of
the die area of an IPU SoC, making it feasible to realize. Crucially,
sizing the packet buffer for a cluster-level setting translates to also
supporting inter-cluster and inter-metro use-cases because the typ-
ical bandwidth required per-connection is significantly lower (by
at least 5-10%) while the RTTs are correspondingly higher. For ex-
ample, in case of AI/ML collectives, the demand reduces across
network levels as communication is realized hierarchically. Finally,
while the Falcon protocol has several mechanisms to ensure the
on-NIC resources do not bottleneck performance (e.g., when con-
nections experience network drops or host slow-downs), Falcon
HW also allows packet buffers to overflow from on-chip SRAM
to external on-NIC DRAM. This choice enables graceful behavior
under extreme corner case conditions.

Connection State Caching. Like other connection-oriented hard-
ware transports, Falcon employs a connection cache to keep the
state of the active connections on chip. At warehouse scale, the
active connection count far exceeds the cache size, resulting in a
near 100% cache miss rate, which can cause a sharp degradation
in throughput and latency. To limit the performance cliff in this
regime, we provisioned enough bandwidth into the cache from
the memory system that holds the connection state. In addition, a
larger second-level cache (shared across multiple blocks in the IPU)
was implemented to further improve the miss bandwidth and miss
latency. Limiting this performance cliff comes at the cost of addi-
tional die area and memory bandwidth but this tradeoff is necessary
to provide predictable sustained performance.

Per-Connection Tx Queues Tx Pipeline

Retx Queues AcK Coalescer

i i Transmit &
—> H —» Cwnd Gating/—p Connection —p. s
T Path Selection Scheduler Retransmit
I[D A Engine

1
-e {[D: FAE Responses

FAE Interface Timeout Engine

[[D:" = =1 FAE Events
1
'

<— ReorderEngine <+—— ACK Processor

Connection Cache Resource Manager

Connection Table

ULP Protocol Engine Interface
Packet Processing Block Interface

<+—— Receive Engine <+—

Rx Pipeline Receive Packet Buffer

Figure 8: Falcon Block Diagram

Error Handling. Hardware transport designs typically choose to
implement the fast path of the data plane in hardware, leaving the
exception paths and error handling to be implemented by firmware.
While this approach simplifies the hardware design, it can lead to a
performance cliff caused by firmware packet processing blocking
the hardware fast path due to packet ordering or data dependency
requirements. At warehouse scale, errors and exceptions (triggered
by packet drops, packet reordering, etc.) occur regularly and can
often be bursty in nature, stalling the fast path for extended periods.
To avoid this performance cliff, we implemented the error handling

255

Singhvi et al.

Signals from packet + state

Events Per-Connection State
e Connection ID
e Timestamps
e Buffer occupancy Flexible Transport Tasks
e # acked packets e Congestion Control
e Multipathing
Rx Datapath Responses e Backpressure ULP

Tx Datapath

Enforce new parameters

o CWND via sliding windows

e Multipath using Flow Labels

e |PG via pacing HW

Transport Parameters

o fCWND, nCWND, IPG

e Flow Labels

e Dynamic Threshold alpha

Shared Memory | SW

Queues

J

Packet Delivery Layer (PDL) Falcon Adaptive Engine (FAE)

Figure 9: Falcon Adaptive Engine Implementation

in hardware. Loss recovery and error handling is implemented by
maintaining per-packet contexts that store the necessary metadata
(e.g. initial Tx timestamp) and retry states (e.g. RNR NACK). Re-
transmission timeouts are handled by efficient hardware threads
that scan per-connection linked-lists of packet contexts.

5.3 Implementing and Scaling Falcon Adaptive Engine

In our IPU, FAE runs on general purpose on-NIC CPU cores; each
core has private L1/L2 caches and a shared L3 cache. FAE commu-
nicates with the PDL via shared memory queues using well-defined
event-response formats. PDL packs the relevant signals in the event,
passes it to FAE, which computes various transport parameters
and passes them back to PDL in the response (see Figure 9). Ta-
ble 3 shows how Falcon implements various transport features
by splitting the mechanism (implemented in hardware PDL) and
the management (implemented in software FAE), along with the
interface signals for specific features.

Apart from ensuring that FAE responds in a timely manner, it is
also crucial to optimize its processing rate so that minimal cores
are used by FAE. A key factor that influences this is how the FAE
algorithm state is managed. Accessing per-connection algorithm
state, on receiving an event, can incur cache misses, slowing down
FAE. Cache misses occur as connection count increases which leads
to the cumulative state exceeding cache capacity.

To avoid the state cache miss penalty, we initially designed FAE
to be stateless, offloading state management to the PDL, which
maintains the per-connection algorithm state and embeds it in the
FAE event. This ensures that state is readily available along with
the interface signals in the event for FAE algorithm consumption.
Finally, FAE returns the state back to PDL in the response. However,
stateless FAE is limited by the amount of per-connection algorithm
state that can be managed by the PDL. To accommodate additional
use-cases, we moved to stateful FAE, in which FAE manages ad-
ditional state in software, which is retrieved while processing an
event. To prevent cache miss overheads, prior to processing an
event, we look further in the event queue and prefetch state for an
upcoming event. This approach ensures that the later event does
not incur the state retrieval penalty.

6 EVALUATION

We evaluate Falcon’s reliability, congestion control, multipathing
(§6.1), NIC hardware performance (§6.2), and its impact on MPI,
HPC and Live Migration workloads (§6.3). We use a testbed of
32 machines equipped with 200 Gbps Falcon NICs and 400Gbps
NVIDIA CX-7 NICs (with RoCE; RTTCC [6] used as the CC algo-
rithm). When evaluating features present in higher-speed NICs

Falcon: A Reliable, Low Latency Hardware Transport SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

—0— Falcon RoCE Go-Back-N —O— RoCE Selective Repeat
= 200 ~g=—tr 5 " O —O—— 5 r 9’0—@-&:9
5 ok \ I I i
§- 1001 Write 0 Send 0 Read Response 0 Read Request
o
S 50- - - -
o
0 00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0
Drop Rate (%) Drop Rate (%) Drop Rate (%) Drop Rate (%)
() (b) () (d)
Figure 10: Falcon and RoCE goodput under losses for different ops (a) Write (b) Send (c) Read Responses and (d) Read Requests
such as RACK-TLP and multipathing (unavailable in our testbed), 200F o EZ4 000-D [RACK+TLP
we use a simulator that has been validated against hardware emu- 1757 L Lo-
lation, ensuring that it accurately reflects the behavior of the actual 5 150 - 20s-
hardware. The simulated topology is a 3-stage network like [48]. Q 125- B
% 100 -\~ o-Falon So6-
6.1 Performance of Falcon Protocol = 75 b RoCE Go-Back-N "
We compare Falcon and RoCE using Reliable Connected (RC) Queue 8 50- 0 RoCE Selective Repeat ‘% 04r
Pairs (QPs). © 95 - S 02-
6.1.1 Loss Recovery 0-! ' ' ' ' ' 0.0
0 5 10 15 20 25 1 2
Impact of losses. To study the efficacy of reliability, we perform a Reorder Rate (%) Drop Rate (%)
point-to-point experiment wherein the first host initiates multiple
8KB RDMA ops (to ensure link is fully utilized) on a single QP and @ (b)
the switch between the two hosts is Conﬁgured to randomly drop Figure 11: (a) Falcon and RoCE goodput when writes are reordered;
packets in the forward direction; we configure both Falcon and (b) role of RACK-TLP under losses
RoCE NICs to 200Gbps for a fair comparison. Figure 10 plots the
achieved goodput as we vary the switch drop percentage for Write, ops as we vary the reordering extent. Similar to performance
Send, Read Response, and Read Request ops respectively. under loss, we see Falcon achieve stable goodput even under
Falcon is able to maintain stable goodput, even under losses, cour- reordering while RoCE alternatives have lower goodput — 5%-52%
tesy of its precise and timely loss recovery heuristic at the sender lower in case of RoCE-SR and up to 20x lower with RoCE-GBN.
and ability to accept packets OOO at the receiver. In contrast, RoCE Falcon’s design choice of accepting OOO packets and including a
reliability schemes observe a drastic drop - up to 3.4x — in goodput reordering-tolerant factor in its loss recovery scheme enables it
under losses. As expected, RoCE’s traditional Go-Back-N (GBN) to distinguish between losses and reordering. By contrast, RoCE
achieves the lowest goodput due to it not accepting OOO packets suffers due to it not being able to do the said distinction, leading
and spuriously retransmitting all outstanding packets as a response to spurious retransmissions of reordered packets. RoCE-GBN
to a single drop. We see RoCE’s enhanced loss recovery scheme, goodput is worse than RoCE-SR because it spuriously retransmits
known as Selective Repeat (SR), improves RoCE-GBN performance the entire window and also cannot accept OOO packets.
by 5%-95% in case of Writes and Read Responses. However, we see
that when Sends and Read Requests are dropped, the performance 400 -
of RoCE-SR and RoCE-GBN are same - revealing RoCE-SR is not 0 Go-Back-N
available to these IB Verbs ops. Due to lack of on-NIC resources, g 300- —O—Selective Repeat
RoCE is forced to drop incoming Sends and Read Requests. By 7;: 200 - —O—Adaptive Routing
contrast, Falcon uses on-NIC resources to enable accepting OO0 -§'
ops while still meeting ordering requirements by reordering OOO S 100 &
arrivals. Moreover, even in scenarios where RoCE-SR makes an '] i [i [' ' g
impact, Falcon outperforms RoCE by 5%-65%. This is due to slow 0002z 04 06 08 10 12 14 16
RoCE-SR, while Falcon can recover multiple lost packets (as com- Drop Rate (%)
municated by the bitmap in Falcon ACK) in an RTT. We note that Figure 12: RoCE goodput under losses, in three different modes
dropping Read Requests doesn’t lead to significant loss of goodput.
This is because the bottleneck is the reverse direction and even if Comparing different RoCE Modes. In addition to RoCE-SR and
some requests are dropped, they are reliably retransmitted before RoCE-GBN, we compare against Adaptive Routing mode (RoCE-AR)
they become head-of-line for processing. on 400G NICs, using the same loss recovery experiment described
Impact of reordering. A critical aspect of any loss recovery previously, but with 16KB RDMA Write ops for higher (~380G)
scheme is to distinguish between losses and reordering. To study goodput. As observed in Figure 12, RoCE-AR performs the slowest.
Falcon and RoCE under packet reordering, we repeat the same 1:1 Packet capture traces show no signal from the target for immediate
experiment as above with the switch reordering packets instead of retransmission (e.g. NACK packets), indicating a slower retransmis-
dropping them. Figure 11a plots the goodput achieved by Write sion mechanism. This performance profile is presumably because

256

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

Mavg Wp50 p99 MM RoCE

6.8

[SCRENTN
T

Relative to Ideal
Do

500

50
Connections

5000

(a) Op latency relative to ideal with varying incast size

_ Wh1 Wh2 Eh3 ha h5 EMRoCE i Falcon

Connections

(b) Total goodput and fairness achieved under incast

Figure 13: Falcon and RoCE behavior under fabric congestion

AR mode is designed for lossless fabrics equipped with Adaptive
Routing capability and not lossy fabrics.

Role of RACK-TLP. We simulate a sender generating 128KB Write
ops with a Poisson arrival distribution, and the switch randomly
dropping packets at varying rates. Figure 11b compares RACK-TLP
and Out-of-Order Distance (OOO-D) heuristic (the initial loss re-
covery scheme in 200G Falcon) where the sender considers a packet
eligible for retransmission if the distance between a non-received
packet and a received higher packet sequence number (PSN) exceeds
the OOO-threshold, similar to TCP FACK recovery [34]. OOO-D
has 7-18% lower goodput than RACK-TLP. Under higher drop rates
where tail losses increase, RACK-TLP uses tail loss probes for faster
recovery, while OOO-D relies on retransmission timeouts.

6.1.2 Congestion Control

Fabric Congestion. We delve into Falcon’s behavior in the pres-
ence of incasts where 5 client machines generate IMB RDMA Writes
(on a per-QP basis) to a single server; we vary QP count on each
host to stress CC. Figure 13 shows that Falcon achieves close to
optimal mean and median latency even with 5000:1 incast, and p99
is only ~2X from ideal - significantly better than RoCE. Within each
host, the per-QP goodput distribution is tight, with <1% variance
and the total goodput is close to line rate whereas RoCE loses 13%
bandwidth during very large incasts.

— Falcon o RoCE

— ncwnd = rx buffer level (%)

2200 138 é80§_

L 100~
S 150 80- 60 &
5 100- 28 40 7
5 L
g 50 , 20- i 20 &

02468105107 5113 02468105107 5113

ts (ms) ts (ms)
(a) Goodput Timeline (b) Falcon Signals

Figure 14: Falcon and RoCE behavior under end-host congestion

End-Host Congestion. To demonstrate how Falcon deals with
end-host congestion, we carry out a point-to-point experiment in

257

Singhvi et al.

103§ 100'+5inglepath
/tg\ @ 80 —°— Multipath
;102§ S 60
2 f %
8 g1, FEErS e g
5 101 S
] ¢ === p50 —=—p99 Singlepath O 20

ol T p50 ——p99 Multipath
100 20 40 60 80 100 00 20 40 60 80 100

% Bisection Bandwidth Offered Load (%)

Figure 15: Multipath Latency Figure 16: Multipath Goodput
B No Multipath Bl Multipath

[CongestionAware [RoundRobin 1.00-

—1200"
1) ()
21000 0 EO75
g 800 £F
s = £0.50-
0 £ 600 S E
r - o
0 2 400 - O 0.25-
5. 3 200
0 [zl

80 90 80 9
% Bisection Bandwidth

Resnet50 Transformer

Figure 17: Multipath Policy Figure 18: ASTRA-sim Training

which a client issues 64KB RDMA writes to a server, where we
induce a slowdown by downgrading the PCle link from 200Gbps
to ~100Gbps. Figure 14a plots the goodput achieved over time. We
can see the moment PCle is downgraded, Falcon is able to quickly
converge to a rate of 100 Gbps to match the bottleneck, while RoCE
takes twice as long. Figure 14b shows that the ncwnd of Falcon
adjusts itself to a lower value within ~5 RTTs. This is courtesy of
Falcon ACKs carrying the RX buffer occupancy signal, which Falcon
uses for ncwnd modulation and ensures the RX buffer occupancy
converges to the desired target. We remove the PCle downgrade at
~5108 ms, and Falcon quickly ramps up back to the original rate;
RoCE takes 6X longer.

6.1.3 Multipath Load Balancing

To examine Falcon’s native multipathing support, we run rack-level
simulations in which 24 hosts in one-rack communicate with 24
hosts in another rack; host-1 in rack-1 communicates with host-1
in rack-2 and so on. We compare Falcon multipath performance
against Falcon connections configured to use single-path.

Latency and Goodput. Figure 15 plots the observed op latency
as we vary the offered load. We observe multipath-enabled con-
nections deliver up to 180x lower latency compared to single-path
connections. With multipathing, connections are able to use mul-
tiple paths in a congestion-aware manner. As shown in Figure 16,
this enables sustaining offered loads of up to 90% of fabric capacity;
in contrast, single-path connections only sustain loads up to 60%.

Scheduling Policy. Falcon’s congestion-aware path selection pol-
icy assigns packets to the flow with the largest open congestion
window, favoring less congested paths (§4.3). Figure 17 shows that
this policy achieves 2-4x lower op latency compared to round-robin
policy at high offered loads.

Benefit to ML Workloads. We use ASTRA-sim [3] to simulate ML
workloads, to study the impact of multipathing. Figure 18 shows
that multipathing, for a 64-node testbed across two racks, reduces
communication time by up to 30% for larger models. The corre-
sponding run time improves by up to 5%.

Falcon: A Reliable, Low Latency Hardware Transport

100 94.89

—O—ideal I median B p99

B min avg

51

Latency (us)

1B 8B 64B 512B 4K 8K 32K 128K512K 1M 2M
Message Size

Figure 19: Message Size Scaling

10°, 140-
g 105% —o— Pony Express 120-
2 5100
1%
€ 5 80
i o= 60
©> 40
20- ——Falcon
100 y ' ' y 0 - n 1t on o 2
0 20 40 60 80 100 0 5 10 15 20 25 30
Offered Load (%) # QPs
(C)) (b)
Figure 20: (a) BW Scaling (b) Op-rate Scaling
8 3.0 -
S 2.5 - —Oo—Falcon
S 2.0 - —o—CX-7
> 15- o_——o-—o”—o_o
2 1.0- o m—
3]
5 0.5+
—10.0:‘ Huo Huuul . Humuz . HHW|3 . HHW|4 . Humus
10 10 10 10 10 10
QPs

Figure 21: Connection Cliff

6.2 Hardware Scalability

Message Size Scaling. We measure RDMA Write completion la-
tency between two hosts in an unloaded network with varying
message sizes. Figure 19 demonstrates that Falcon achieves tight
tail latencies — p99 and median latencies within 1% of ideal.

Bandwidth Scaling. We perform a 500:1 RDMA Read incast where
a single client requests data from 500 connections spread over
five servers at varying bandwidths. Figure 20a shows that Falcon
achieves two orders of magnitude lower latency than state-of-the-
art SW transport when close to saturating the link bandwidth.

Op-Rate Scaling. Figure 20b shows the maximum op rate achieved
between two hosts using 8B RDMA Writes: a single QP drives
20Mops and we hit 120Mops with as few as 12 QPs.

Connection Cliff. To understand the implications of the connec-
tion state caching design, we run a ping-pong (closed-loop, single-
outstanding, 8B RDMA Reads) workload between two hosts, select-
ing connections randomly to exert cache pressure. Figure 21 plots
the increase in the software-measured RTT as a function of #con-
nections. RTT is highly sensitive to cache misses, as these misses
are on the critical path due to interaction with on-NIC DRAM (in
case of Falcon NIC) or host memory (in case of CX-7). NIC designs
with ample concurrency can “hide” such misses when measuring
throughput, but the latency profile is always revealing — unlike Fal-
con NICs, CX-7s incur a ~3X latency increase for high connection
counts above 100K.

258

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

o

w
(=}
'

o ey . /
a 2 2 - 310 Connections /
o) =0-100 Connections 7
= 5
< S -7
8 15 - ==po state o 1
D‘g =0=no prefetch E —p99 == p999
- -O-prefetch «
< 3}
g O 1 1 \é 1 \.i 1 1 1 1 1 1 m 0 1 1 1 1 1 1 1
= Hw”gﬂfﬁéééé 1 2 4 8 16 32 6
~
Connections Slowdown (us)
(C)) (b)
Figure 22: (a) FAE State Scaling (b) Impact of Slow FAE
25
% 20~
< 215 - B s
-E o
g \2_/ 10 -
] 5-
0 | | . | | | . |
64 128 192 256 320 384 448 512
State Size (Bytes)
Figure 23: FAE State Sensitivity
1200~ n
—~ I
g I
~ 800- - Backpressure [
(>_f —= "PNone " fl:
c —o— —- Static ,/'
% 400- . —o= ——Dynamic . !
3 0y
O L L i\/\l
0 200 400 600 800 1000 0 2 4 6 8 10

Slow Connections Time (ms)

Figure 24: Isolation via fine-grained backpressure

FAE Scaling. FAFE’s scalability depends on #connections and their
associated state. Figure 22a shows the maximum event rate (using
one Neoverse-N1 ARM core [8]) for varying connection counts
with FAE variants (stateless, stateful, and stateful with prefetch-
ing). While a naive stateful implementation degrades event rate,
prefetching maintains a stable 20 Mops. Prefetching reduces state
fetch overhead in the critical path, especially at high connection
counts where state spills out of L1/L2/L3 caches progressively.

To demonstrate the impact of a slow FAE, we limit its event
processing rate by introducing delays in event turn around times.
We run an incast experiment with two senders creating upto 100
QPs each, issuing 1MB RDMA Writes. Figure 22b plots the fabric
RTT relative to an unrestricted FAE. Falcon’s performance remains
robust, with an impact of 1.5-2X increase in fabric delay due to
delayed FAE responses only when added delays are beyond 32ps.

FAE State Sensitivity. We tested sensitivity to state size by mea-
suring the random access event rate for 128K connections. Even
with an eight-fold increase in state size from 64B, performance
only dropped to 15M Events/s (from 20M Events/s) due to cache
misses (Figure 23). Given that our real-world applications with Fal-
con (§6.3) peaked at 8M Events/s, FAE has substantial capacity to
support larger state for future use cases.

Isolation. To demonstrate resource isolation (§4.6), we start two
sets of flows from the same host: fast flows within the rack and
slow flows across the rack, which are periodically slowed down
by an incast. Slow flows can occupy most of Falcon’s resources,

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

10 108;
107,
5 10% g 10?
g 10 :
>
S 10% 5 & T 10t
£ - RDMA max -+ TCP 8103 o
S 10 mex max “ 10%: - RDMA max -2 TCP max
->-RDMA avg -2-TCP avg 101 b
100 ‘ : ‘ ‘ 100 ->-RDMA avg -=-TCP avg
4 64 1K 16K 256K 4 64 1K 16K

Message Size (Bytes) Message Size (Bytes)

Figure 25: MPI AllReduce Figure 26: MPI AllToAll

Metric | NLF | SSD
Read Bandwidth 97.1% | 100%
Write Bandwidth 91.0% | 100%
IOPS (w/ 1MBps limit) 100% | 100%

Table 4: Performance of NLF over Falcon and Local SSD

and impact fast flows. Figure 24 shows that fast flows experience
a 63x slowdown (with 500 slow flows) without backpressure, im-
proving to 37X under static backpressure, and to ~3x with dynamic
backpressure.

6.3 Real-World Applications

MPI Collectives. We use Intel MPI Benchmarks for MPI collective
performance evaluation. Figure 25 and 26 plot AllReduce and All-
ToAll collective completion time as a function of message size, for
RDMA-Falcon and TCP (legacy MPI SW stack). We show 32-node
scale with 192 processes per node, using all cores. The benefits of
Falcon extend to both small and large operations. RDMA-Falcon
improves AllToAll performance with small 4B messages by 4.3X
relative to TCP, demonstrating the latency benefits of the hard-
ware transport. Large, compute-bound ops also benefit from the
offloaded Falcon transport; e.g., 64KB AllReduce is 5.5% faster with
RDMA-Falcon. §B.1 shows the performance of other collectives.

50 -
B RDMA o, 10 - M RDMA
240" ma ep & g mTCce
o
‘“30" o 6 -
=
Kl i > I
- o _I-I

16 1 16 32

Nodes # Nodes

Figure 27: Gromacs Figure 28: WRF

GROMACS and WRF. We evaluate GROMACS [4], a popular
molecular dynamics simulation tool, and WRF [7], a weather fore-
casting model, over RDMA-Falcon and TCP, both using all 192
CPU cores per node. Figure 27 shows that with Falcon, simulation
performance for the GROMACS benchpep workload scales to 16
nodes, while overall performance decreases above 8 nodes with
TCP. RDMA-Falcon achieves 2.4x higher performance over the
best-case TCP scale. Figure 28 shows WRF simulation rate for the
CONUS 2p5km model. With Falcon, WRF scales to 32 nodes, with a
32% improvement in simulation time relative to TCP.

Near Local Flash (NLF). NLF uses NVMe-over-Falcon to disag-
gregate SSDs from compute nodes, making them accessible over

259

Singhvi et al.

====Pre Copy Post Copy =#«=== Post Migration

s Blackout

Falcon Pony Express

o 1.
EIO

U 110 H
10
2 to t4

t‘3
Time (Linear Units)

t

Figure 29: Live migration timeline with RDMA-Falcon and Pony Express

a network as if they were locally attached. We evaluate NLF per-
formance with storage access patterns using random reads (4KB to
16KB) and writes (1MB). NLF (using Falcon) incurs network over-
heads compared to local SSDs with DRAM caching. Table 4 shows
that despite the network overheads, NLF’s bandwidth and op rate
are within 10% of local SSDs.

VM Live Migration. We compare Falcon with Pony Express for
live migration of guest memory using a synthetic benchmark. To
stress the migration stack, the guest VM continuously accesses and
dirties its memory throughout the migration. Memory migration
occurs in two phases [44]. In the pre-copy phase, the guest VM’s
memory is transferred to a target host while the VM remains active
on the source. After a brief blackout period, the VM resumes on the
target and enters the post-copy phase, fetching remaining memory
in the background. If a guest’s vCPU tries to access a page that is
not yet fetched, that page is fetched on-demand, which can stall
the corresponding vCPU until the requested page arrives.

As shown in Figure 29, Falcon significantly improves this process
over Pony Express, accelerating the pre-copy and post-copy phases
by 1.17X and 2.5X%, respectively. Crucially, the faster post-copy yields
a 3% higher guest access rate and a 6x reduction in vCPU wait time.

7 RELATED WORK

Hardware Transports. Amazon’s Scalable Reliable Datagram
(SRD) [46], designed for multi-tenant cloud environments, provides
a libfabric interface for HPC workloads and NCCL for ML
collectives. SRD employs congestion control similar to BBR [16]
and uses multipathing for network load balancing. While SRD
offloads ordering to the application, Falcon provides multipathing
while maintaining IB Verbs ordering semantics. TTPoE [40],
Tesla’s RDMA hardware transport, uses on-NIC SRAM to improve
performance and tolerate large RTTs. However, it is designed for
single-tenancy and P2P transmission model, doesn’t support IP
networks, and lacks CC and multipathing support, which makes it
unsuitable for large-scale, multi-tenant environments. IRMA [49]
supports only a simplified non-verbs RMA API, onloads CC to
the host SW, and relies on a central control plane to manage NIC
resources. ZeroNIC [50] is a co-designed NIC that combines a
zero-copy HW datapath and SW based control-path. This allows
flexibility to implement different transport stacks, at the cost of
reduced scalability and performance compared to Falcon.

While both Ultra Ethernet Transport (UET) from UEC [19] and
Falcon target AI/ML and HPC networking, they differ in key ar-
eas, including Falcon’s additional support for shared networks. For
application support, Falcon maintains compatibility with existing
applications using the IB Verbs standard, whereas UET is layered un-
der libfabric, requiring non-libfabric applications to be adapted. To
address connection scalability, Falcon employs micro-architectural

Falcon: A Reliable, Low Latency Hardware Transport

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

RoCE SRD 1RMA Pony Express EQDS/NDP Falcon

g Cong. Ctrl (CC) DCQCN/RTTCC [6]' Delay-based App-level Swift! Receiver-based Swift!

% | Multipathing No support? Yes Yes? Yes Packet Spraying Yes

E Programmability Limited* CcC No SW SW* HW-assisted®

S Switch Support PFC desired Commodity Eth Commodity Eth Trimming Commodity Eth

= | Loss Recovery GBN/SR Timeout-based N/A? SACK Trimming SACK/RACK-TLP
2 | Ordering Ordered Unordered Unordered Unordered Ordered Ordered/Unordered
Z | Multi-ULP IB Verbs libfabric Custom RDMA Custom RMA Yes IBVerbs/NVMe/etc.
2 | OpRate High High High SW-limited’ SW-limited High

=

O

! Swift uses in-band hardware timestamps while RTTCC uses probe packets
to measure delay.

2 1RMA’s network Aquila [23] provided link-level reliability.

3 Some RoCE deployments rely on switch-based adaptive routing.

4 Some RoCE NICs support programming CC [9].

> EQDS [39] talks about a potential EQDS NIC. It is not clear how much
programmability such NIC would have.

® Falcon’s FAE provides programmability for CC, resource management,
multi-pathing and ack modulation.

7 Pony Express provides high CPU efficiency if compared to SW transports.

Table 5: An overview of transports capabilities and the mechanisms that enable them

solutions like on-NIC DRAM caching, while UET introduces the
packet-delivery context, an ephemeral, on-demand connection state.
For security, Falcon secures traffic on a per-connection basis, while
UET offers either a group-based secure domain with shared decryp-
tion or a client-server model for private traffic. For load balanc-
ing, Falcon utilizes multipathing with a reorder buffer to maintain
IB Verbs’ strict ordering, but UET’s packet spraying is limited to
unordered traffic. Similar to Falcon, UET employs a SACK-based
method for loss recovery.

Loss recovery. To mitigate RoCE limitations, IRN [36] introduced
selective acknowledgments, and later a variant, selective repeat
(SR), is adopted by RoCE NICs [5]. However, as we showed, SR’s
performance falls short compared to Falcon. SRNIC [52] attempts to
mitigate the connection scalability problem, which is exacerbated
by SR bitmaps, by carefully offloading only the frequently accessed
state to the NIC.

Load-balancing. ConWeave[51] achieves network load balancing
for RDMA by masking out-of-order delivery with programmable
ToR switches. MP-RDMA [32] adds multi-pathing capability to
RoCE but still requires PFC. However, neither fully overcomes the
limitations of current RoCE.

Programmability. While Tonic [1] and HotCocoa [13] are pro-
grammable frameworks that enable custom CC algorithms, they
cannot support Falcon’s multipath CC, which requires multiple
congestion windows and a path selection primitive for a single
connection. NanoTransport [14] optimizes RPC-based applications
by leveraging P4 programmable architecture and FPGAs. Similarly,
nanoPU [26] uses a P4 pipeline and a RISC-V CPU scheduling code-
sign to reduce message latencies. However, the long-term viability
of P4 NIC pipelines in production environments remains unproven.

Transport Protocols. Homa [37] and NDP [25] use receiver-
driven packet scheduling, but require full-bisection bandwidth
fabrics or rely on packet trimming. EQDS [39] provides transport
functionality by tunneling different ULPs and while it envisions
a hardware NIC implementation, it does not support standard IB
Verbs. AccelTCP [38] accelerates short-lived flows by offloading
the control path to the NIC. FlexTOE [47] is a TCP offload engine
that achieves high performance by pipelining TCP processing.
RoGUE [30] onloads CC to the CPU to support easier upgrades,
potentially incurring heavy overhead during high congestion event
rates. HPCC [31], PowerTCP [11], and Bolt [15] utilize In-band

260

Network Telemetry signals and advanced switch capabilities to
enhance CC, limiting their applicability in legacy networks. Falcon
has no reliance on advanced switch capabilities but can potentially
benefit from them due to its programmability. We summarize the
related work in Table 5.

8 CONCLUSION

Falcon is a significant advancement in hardware transports: it is
a converged NIC that works over standard Ethernet datacenter
networks with packet losses, reordering and a diversity of paths,
offering high performance, efficiency, and scalability for both spe-
cialized and general scale-out applications. Falcon is a departure
from existing hardware transports through its ability to provide
predictable performance and CPU efficiency without requiring com-
plex network configurations or specialized switches, while main-
taining compatibility with existing application interfaces. Its lay-
ered architecture, hardware-assisted programmable engine, native
multipathing, hardware-based retransmissions and error-handling
mechanisms collectively contribute to its high performance. Fal-
con’s development embraced production experience from software
transports, and as datacenter networks continue to grow in scale
and complexity, Falcon’s design rooted in adaptability positions it
as a promising transport for existing and future applications.

Ethics. This work does not raise any ethical issues.

ACKNOWLEDGMENTS

We would like to thank Neal Cardwell, Thomas Wenisch, Arjun
Singh, the anonymous SIGCOMM reviewers and our shepherd,
Anirudh Sivaraman, for providing valuable feedback. Falcon is a
multi-year effort at Google that benefited from an ecosystem of
support and innovation. We thank the RDMA-Falcon hardware, pro-
duction, and support teams at Google for their contributions to the
work, including but not limited to, Jiazhen Zheng, Chandan Mud-
damsetty, Sean Clark, Kaiyu Shen, Alvin Wijaya, Weiwei Jiang, Ger-
ald Schmidt, Rakesh Gautam, Ajay Venkatesan, Bala Jupudi, Matt
Wycklendt, Julian Mentasti, Jessica Ramirez, Neil Van Lysel, Stefano
Vazzoler, Tom Landon, Jacob Moroni, Akshat Thakkar, Huadong
Liu, Anil Yelam, Gautam Kumar, Chen Zhao, Ashwin Murthy, Am-
rutha Sampath, Nic McDonald, Ahmad Ghalayini, Sarah Tollman,
Tiancan Yu, Jiaxin Lin, Weida Huang and Jiayi Chen.

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

REFERENCES

(1]

—
—

[12

[13]

=
it

(15

[16]

[17]

[18

[19]

[20]
[21]

[22]

[23]

2020. Enabling Programmable Transport Protocols in High-Speed NICs. In 17th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 20).
USENIX Association, Santa Clara, CA. https://www.usenix.org/conference/
nsdi20/presentation/arashloo

2021. PSP Security Protocol. https://github.com/google/psp. [Accessed 24-07-
2025].

2024. AstraSIM Models. https://github.com/astra-sim/astra-sim/tree/ASTRA-
sim-1.0/inputs/workload. [Accessed 30-01-2024].

2024. Gromacs: A free and open-source software suite for high-performance
molecular dynamics and output analysis. https://www.gromacs.org/. [Accessed
30-01-2024].

2024. NVIDIA ConnectX-6 Dx Network Adapters — nvidia.com. https://
www.nvidia.com/en-us/networking/ethernet/connectx-6-dx/. [Accessed 11-01-
2024].

2024. Scaling Zero Touch RoCE Technology with Round Trip Time Con-
gestion Control. https://developer.nvidia.com/blog/scaling-zero-touch-roce-
technology-with-round-trip-time-congestion-control/. [Accessed 30-01-2024].
2024. Weather Research & Forecasting Model (WRF). https:
//www.mmm.ucar.edu/models/wrf/. [Accessed 30-01-2024].

2025. ARM Neoverse N1. https://www.arm.com/products/silicon-ip-cpu/
neoverse/neoverse-nl. [Accessed 24-07-2025].

2025. DOCA PCC. https://docs.nvidia.com/doca/sdk/doca+pcc/index.html. [Ac-
cessed 28-01-2025].

2025. Spectrum-X. https://www.nvidia.com/en-us/networking/spectrumx/. [Ac-
cessed 24-07-2025].

Vamsi Addanki, Oliver Michel, and Stefan Schmid. 2022. PowerTCP: Pushing
the Performance Limits of Datacenter Networks. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 22). USENIX Association,
Renton, WA, 51-70. https://www.usenix.org/conference/nsdi22/presentation/
addanki

Saksham Agarwal, Rachit Agarwal, Behnam Montazeri, Masoud Moshref, Khaled
Elmeleegy, Luigi Rizzo, Marc Asher de Kruijf, Gautam Kumar, Sylvia Ratnasamy,
David Culler, and Amin Vahdat. 2022. Understanding host interconnect conges-
tion. In Proceedings of the 21st ACM Workshop on Hot Topics in Networks (Austin,
Texas) (HotNets "22). Association for Computing Machinery, New York, NY, USA,
198-204. doi:10.1145/3563766.3564110

Mina Tahmasbi Arashloo, Monia Ghobadi, Jennifer Rexford, and David Walker.
2017. HotCocoa: Hardware Congestion Control Abstractions. In Proceedings of the
16th ACM Workshop on Hot Topics in Networks (Palo Alto, CA, USA) (HotNets ’17).
Association for Computing Machinery, New York, NY, USA, 108-114. doi:10.1145/
3152434.3152457

Serhat Arslan, Stephen Ibanez, Alex Mallery, Changhoon Kim, and Nick McKe-
own. 2021. NanoTransport: A Low-Latency, Programmable Transport Layer for
NICs. In Proceedings of the ACM SIGCOMM Symposium on SDN Research (SOSR)
(Virtual Event, USA) (SOSR ’21). Association for Computing Machinery, New
York, NY, USA, 13-26. doi:10.1145/3482898.3483365

Serhat Arslan, Yuliang Li, Gautam Kumar, and Nandita Dukkipati. 2023. Bolt:
Sub-RTT Congestion Control for Ultra-Low Latency. In 20th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 23). USENIX Association,
Boston, MA, 219-236. https://www.usenix.org/conference/nsdi23/presentation/
arslan

Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. 2016. BBR: Congestion-Based Congestion Control. Queue 14, 5
(Oct. 2016), 20-53. doi:10.1145/3012426.3022184

Yuchung Cheng, Neal Cardwell, Nandita Dukkipati, and Priyaranjan Jha. 2021.
RFC 8985: The RACK-TLP Loss Detection Algorithm for TCP.

Abhijit K. Choudhury and Ellen L. Hahne. 1998. Dynamic queue length thresholds
for shared-memory packet switches. IEEE/ACM Trans. Netw. 6, 2 (April 1998),
130-140. doi:10.1109/90.664262

Ultra Ethernet Consortium. 2025. Ultra Ethernet Specification v1.0.
https://www.ultraethernet.org/wp-content/uploads/sites/20/2025/06/UE-
Specification-6.11.25.pdf

Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56,
2 (Feb. 2013), 74-80. doi:10.1145/2408776.2408794

Denis Foley and John Danskin. 2017. Ultra-performance Pascal GPU and NVLink
interconnect. IEEE Micro 37, 2 (2017), 7-17.

Peter X. Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal, Sylvia Rat-
nasamy, and Scott Shenker. 2015. pHost: Distributed Near-optimal Datacen-
ter Transport over Commodity Network Fabric. In Proceedings of the 11th
ACM Conference on Emerging Networking Experiments and Technologies (Hei-
delberg, Germany) (CoNEXT ’15). ACM, New York, NY, USA, Article 1, 12 pages.
doi:10.1145/2716281.2836086

Dan Gibson, Hema Hariharan, Eric Lance, Moray McLaren, Behnam Montazeri,
Arjun Singh, Stephen Wang, Hassan M. G. Wassel, Zhehua Wu, Sunghwan Yoo,
Raghuraman Balasubramanian, Prashant Chandra, Michael Cutforth, Peter Cuy,
David Decotigny, Rakesh Gautam, Alex Iriza, Milo M. K. Martin, Rick Roy, Zuowei
Shen, Ming Tan, Ye Tang, Monica Wong-Chan, Joe Zbiciak, and Amin Vahdat.
2022. Aquila: A unified, low-latency fabric for datacenter networks. In 19th

USENIX Symposium on Networked Systems Design and Implementation (NSDI
22). USENIX Association, Renton, WA, 1249-1266. https://www.usenix.org/

261

[26

[27

[28

[29]

[30

[31

[33

[34

[36

[38

[39

Singhvi et al.

conference/nsdi22/presentation/gibson

Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Pad-
hye, and Marina Lipshteyn. 2016. RDMA over Commodity Ethernet at Scale. In
Proceedings of the 2016 ACM SIGCOMM Conference (Florianopolis, Brazil) (SIG-
COMM ’16). Association for Computing Machinery, New York, NY, USA, 202-215.
doi:10.1145/2934872.2934908

Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W.
Moore, Gianni Antichik, and Marcin Mojcik. 2017. Re-architecting Datacenter
Networks and Stacks for Low Latency and High Performance. In Proceedings of
the ACM SIGCOMM 2017 Conference (Los Angeles, CA) (SIGCOMM °17). ACM,
New York, NY, USA, 29-42.

Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo Jepsen, Muhammad Shah-
baz, Changhoon Kim, and Nick McKeown. 2021. The nanoPU: A Nanosec-
ond Network Stack for Datacenters. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21). USENIX Association, 239-256.
https://www.usenix.org/conference/osdi21/presentation/ibanez

Norm Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng Nai,
Nishant Patil, Suvinay Subramanian, Andy Swing, Brian Towles, et al. 2023.
Tpu v4: An optically reconfigurable supercomputer for machine learning with
hardware support for embeddings. In Proceedings of the 50th Annual International
Symposium on Computer Architecture. 1-14.

Stephen Kent and Ran Atkinson. 1998. IP Encapsulating Security Payload (ESP).
RFC 2406. doi:10.17487/RFC2406

Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan M. G. Wassel, Xian
Wu, Behnam Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld,
Michael Ryan, David Wetherall, and Amin Vahdat. 2020. Swift: Delay is Simple
and Effective for Congestion Control in the Datacenter. In Proceedings of the
Annual Conference of the ACM Special Interest Group on Data Communication
on the Applications, Technologies, Architectures, and Protocols for Computer Com-
munication (Virtual Event, USA) (SIGCOMM °20). Association for Computing
Machinery, New York, NY, USA, 514-528. doi:10.1145/3387514.3406591
Yanfang Le, Brent Stephens, Arjun Singhvi, Aditya Akella, and Michael M.
Swift. 2018. RoGUE: RDMA over Generic Unconverged Ethernet. In Proceed-
ings of the ACM Symposium on Cloud Computing (Carlsbad, CA, USA) (SoCC
’18). Association for Computing Machinery, New York, NY, USA, 225-236.
doi:10.1145/3267809.3267826

Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and et al. 2019. HPCC:
High Precision Congestion Control. In Proceedings of the ACM Special Interest
Group on Data Communication (Beijing, China) (SIGCOMM °19). Association for
Computing Machinery, New York, NY, USA, 44-58. doi:10.1145/3341302.3342085
Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yonggiang Xiong, Peng Cheng, Jian-
song Zhang, Enhong Chen, and Thomas Moscibroda. 2018. Multi-Path Transport
for RDMA in Datacenters. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18). USENIX Association, Renton, WA, 357-371.
https://www.usenix.org/conference/nsdi18/presentation/lu

Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean Bauer,
Carlo Contavalli, Michael Dalton, Nandita Dukkipati, William C. Evans, Steve
Gribble, and et al. 2019. Snap: A Microkernel Approach to Host Network-
ing. In Proceedings of the 27th ACM Symposium on Operating Systems Principles
(Huntsville, Ontario, Canada) (SOSP ’19). Association for Computing Machinery,
New York, NY, USA, 399-413. doi:10.1145/3341301.3359657

Matthew Mathis and Jamshid Mahdavi. 1996. Forward acknowledgement: refining
TCP congestion control. In Conference Proceedings on Applications, Technologies,
Architectures, and Protocols for Computer Communications (Palo Alto, California,
USA) (SIGCOMM ’96). Association for Computing Machinery, New York, NY,
USA, 281-291. doi:10.1145/248156.248181

M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. 1996. TCP Selective Acknowl-
edgment Options. RFC 2018. RFC Editor.

Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi, Arvind Kr-
ishnamurthy, Sylvia Ratnasamy, and Scott Shenker. 2018. Revisiting Network
Support for RDMA. In Proceedings of the 2018 Conference of the ACM Spe-
cial Interest Group on Data Communication (Budapest, Hungary) (SIGCOMM
’18). Association for Computing Machinery, New York, NY, USA, 313-326.
doi:10.1145/3230543.3230557

Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. 2018.
Homa: A Receiver-driven Low-latency Transport Protocol Using Network Priori-
ties. In Proceedings of the 2018 Conference of the ACM Special Interest Group on
Data Communication (Budapest, Hungary) (SSIGCOMM °18). ACM, New York, NY,
USA, 221-235. doi:10.1145/3230543.3230564

YoungGyoun Moon, SeungEon Lee, Muhammad Asim Jamshed, and Kyoung-
Soo Park. 2020. AccelTCP: Accelerating Network Applications with State-
ful TCP Offloading. In 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20). USENIX Association, Santa Clara, CA, 77-92.
https://www.usenix.org/conference/nsdi20/presentation/moon

Vladimir Olteanu, Haggai Eran, Dragos Dumitrescu, Adrian Popa, Cristi Baciu,
Mark Silberstein, Georgios Nikolaidis, Mark Handley, and Costin Raiciu. 2022.
An edge-queued datagram service for all datacenter traffic. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22). USENIX
Association, Renton, WA, 761-777. https://www.usenix.org/conference/nsdi22/
presentation/olteanu

https://www.usenix.org/conference/nsdi20/presentation/arashloo
https://www.usenix.org/conference/nsdi20/presentation/arashloo
https://github.com/google/psp
https://github.com/astra-sim/astra-sim/tree/ASTRA-sim-1.0/inputs/workload
https://github.com/astra-sim/astra-sim/tree/ASTRA-sim-1.0/inputs/workload
https://www.gromacs.org/
https://www.nvidia.com/en-us/networking/ethernet/connectx-6-dx/
https://www.nvidia.com/en-us/networking/ethernet/connectx-6-dx/
https://developer.nvidia.com/blog/scaling-zero-touch-roce-technology-with-round-trip-time-congestion-control/
https://developer.nvidia.com/blog/scaling-zero-touch-roce-technology-with-round-trip-time-congestion-control/
https://www.mmm.ucar.edu/models/wrf/
https://www.mmm.ucar.edu/models/wrf/
https://www.arm.com/products/silicon-ip-cpu/neoverse/neoverse-n1
https://www.arm.com/products/silicon-ip-cpu/neoverse/neoverse-n1
https://docs.nvidia.com/doca/sdk/doca+pcc/index.html
https://www.nvidia.com/en-us/networking/spectrumx/
https://www.usenix.org/conference/nsdi22/presentation/addanki
https://www.usenix.org/conference/nsdi22/presentation/addanki
https://doi.org/10.1145/3563766.3564110
https://doi.org/10.1145/3152434.3152457
https://doi.org/10.1145/3152434.3152457
https://doi.org/10.1145/3482898.3483365
https://www.usenix.org/conference/nsdi23/presentation/arslan
https://www.usenix.org/conference/nsdi23/presentation/arslan
https://doi.org/10.1145/3012426.3022184
https://doi.org/10.1109/90.664262
https://www.ultraethernet.org/wp-content/uploads/sites/20/2025/06/UE-Specification-6.11.25.pdf
https://www.ultraethernet.org/wp-content/uploads/sites/20/2025/06/UE-Specification-6.11.25.pdf
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1145/2716281.2836086
https://www.usenix.org/conference/nsdi22/presentation/gibson
https://www.usenix.org/conference/nsdi22/presentation/gibson
https://doi.org/10.1145/2934872.2934908
https://www.usenix.org/conference/osdi21/presentation/ibanez
https://doi.org/10.17487/RFC2406
https://doi.org/10.1145/3387514.3406591
https://doi.org/10.1145/3267809.3267826
https://doi.org/10.1145/3341302.3342085
https://www.usenix.org/conference/nsdi18/presentation/lu
https://doi.org/10.1145/3341301.3359657
https://doi.org/10.1145/248156.248181
https://doi.org/10.1145/3230543.3230557
https://doi.org/10.1145/3230543.3230564
https://www.usenix.org/conference/nsdi20/presentation/moon
https://www.usenix.org/conference/nsdi22/presentation/olteanu
https://www.usenix.org/conference/nsdi22/presentation/olteanu

Falcon: A Reliable, Low Latency Hardware Transport

[40]

[41]

[42

[43]

[44]

[45]

[46]

[47

[48]

Eric Quinnell. 2024. Tesla Transport Protocol Over Ethernet (TTPoE): A New
Lossy, Exa-Scale Fabric for the Dojo AI Supercomputer. In 2024 IEEE Hot Chips
36 Symposium (HCS). 1-23. doi:10.1109/HCS61935.2024.10664947

Mubashir Adnan Qureshi, Yuchung Cheng, Qianwen Yin, Qiaobin Fu, Gautam
Kumar, Masoud Moshref, Junhua Yan, Van Jacobson, David Wetherall, and Abdul
Kabbani. 2022. PLB: Congestion Signals Are Simple and Effective for Network
Load Balancing. In Proceedings of the ACM SIGCOMM 2022 Conference (Amster-
dam, Netherlands) (SSIGCOMM °22). Association for Computing Machinery, New
York, NY, USA, 207-218. doi:10.1145/3544216.3544226

Abhiram Ravi, Nandita Dukkipati, Naoshad Mehta, and Jai Kumar. 2024. Conges-
tion Signaling (CSIG). Internet-Draft draft-ravi-ippm-csig-01. Internet Engineer-
ing Task Force. https://datatracker.ietf.org/doc/draft-ravi-ippm-csig/01/ Work
in Progress.

Renato Recio, Bernard Metzler, Paul Culley, Jeff Hilland, and Dave Garcia. 2007.
A Remote Direct Memory Access Protocol Specification. RFC 5040.

Adam Ruprecht, Danny Jones, Dmitry Shiraev, Greg Harmon, Maya Spivak,
Michael Krebs, Miche Baker-Harvey, and Tyler Sanderson. 2018. VM Live
Migration At Scale. SIGPLAN Not. 53, 3 (March 2018), 45-56. do0i:10.1145/
3296975.3186415

Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius, Vinh The Lam, Carlo Con-
tavalli, and Amin Vahdat. 2017. Carousel: Scalable Traffic Shaping at End Hosts.
In Proceedings of the Conference of the ACM Special Interest Group on Data Com-
munication (Los Angeles, CA, USA) (SIGCOMM ’17). Association for Computing
Machinery, New York, NY, USA, 404-417. doi:10.1145/3098822.3098852

Leah Shalev, Hani Ayoub, Nafea Bshara, and Erez Sabbag. 2020. A Cloud-
Optimized Transport Protocol for Elastic and Scalable HPC. IEEE Micro 40,
6 (2020), 67-73. doi:10.1109/MM.2020.3016891

Rajath Shashidhara, Tim Stamler, Antoine Kaufmann, and Simon Peter. 2022.
FlexTOE: Flexible TCP Offload with Fine-Grained Parallelism. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22). USENIX
Association, Renton, WA, 87-102. https://www.usenix.org/conference/nsdi22/
presentation/shashidhara

Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, and et al.
2015. Jupiter Rising: A Decade of Clos Topologies and Centralized Control in
Google’s Datacenter Network. SIGCOMM Comput. Commun. Rev. 45, 4 (Aug.

262

[49

[50

[53

SIGCOMM °25, September 8-11, 2025, Coimbra, Portugal

2015), 183-197. do0i:10.1145/2829988.2787508

Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F. Wenisch, Monica Wong-
Chan, Sean Clark, Milo M. K. Martin, Moray McLaren, Prashant Chandra, Rob
Cauble, Hassan M. G. Wassel, Behnam Montazeri, Simon L. Sabato, Joel Scherpelz,
and Amin Vahdat. 2020. 1RMA: Re-Envisioning Remote Memory Access for
Multi-Tenant Datacenters. In Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communication (Virtual Event, USA)
(SIGCOMM °20). Association for Computing Machinery, New York, NY, USA,
708-721. doi:10.1145/3387514.3405897

Athinagoras Skiadopoulos, Zhiqiang Xie, Mark Zhao, Qizhe Cai, Saksham Agar-
wal, Jacob Adelmann, David Ahern, Carlo Contavalli, Michael Goldflam, Vitaly
Mayatskikh, Raghu Raja, Daniel Walton, Rachit Agarwal, Shrijeet Mukherjee,
and Christos Kozyrakis. 2024. High-throughput and Flexible Host Networking for
Accelerated Computing. In 18th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 24). USENIX Association, Santa Clara, CA, 405-423.
https://www.usenix.org/conference/osdi24/presentation/skiadopoulos

Cha Hwan Song, Xin Zhe Khooi, Raj Joshi, Inho Choi, Jialin Li, and Mun Choon
Chan. 2023. Network Load Balancing with In-Network Reordering Support for
RDMA. In Proceedings of the ACM SIGCOMM 2023 Conference (New York, NY,
USA) (ACM SIGCOMM °23). Association for Computing Machinery, New York,
NY, USA, 816-831. doi:10.1145/3603269.3604849

Zilong Wang, Layong Luo, Qingsong Ning, Chaoliang Zeng, Wenxue Li, Xinchen
Wan, Peng Xie, Tao Feng, Ke Cheng, Xiongfei Geng, Tianhao Wang, Weicheng
Ling, Kejia Huo, Pingbo An, Kui Ji, Shideng Zhang, Bin Xu, Ruiqing Feng, Tao
Ding, Kai Chen, and Chuanxiong Guo. 2023. SRNIC: A Scalable Architecture
for RDMA NICs. In 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23). USENIX Association, Boston, MA, 1-14. https://
www.usenix.org/conference/nsdi23/presentation/wang-zilong

David Wetherall, Abdul Kabbani, Van Jacobson, Jim Winget, Yuchung Cheng,
Charles B. Morrey III, Uma Moravapalle, Phillipa Gill, Steven Knight, and Amin
Vahdat. 2023. Improving Network Availability with Protective ReRoute. In Pro-
ceedings of the ACM SIGCOMM 2023 Conference (New York, NY, USA) (ACM
SIGCOMM °23). Association for Computing Machinery, New York, NY, USA,
684-695. d0i:10.1145/3603269.3604867

https://doi.org/10.1109/HCS61935.2024.10664947
https://doi.org/10.1145/3544216.3544226
https://datatracker.ietf.org/doc/draft-ravi-ippm-csig/01/
https://doi.org/10.1145/3296975.3186415
https://doi.org/10.1145/3296975.3186415
https://doi.org/10.1145/3098822.3098852
https://doi.org/10.1109/MM.2020.3016891
https://www.usenix.org/conference/nsdi22/presentation/shashidhara
https://www.usenix.org/conference/nsdi22/presentation/shashidhara
https://doi.org/10.1145/2829988.2787508
https://doi.org/10.1145/3387514.3405897
https://www.usenix.org/conference/osdi24/presentation/skiadopoulos
https://doi.org/10.1145/3603269.3604849
https://www.usenix.org/conference/nsdi23/presentation/wang-zilong
https://www.usenix.org/conference/nsdi23/presentation/wang-zilong
https://doi.org/10.1145/3603269.3604867

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

APPENDICES

Appendices are supporting material that has not been peer-reviewed.

A ADDITIONAL FALCON DESIGN DETAILS

A.1 Separate Request-Response PSN Space

Avoiding request-response deadlocks in protocol implementations
with finite resources is a critical requirement for Falcon and existing
protocols such as RoCE and iWARP.

To avoid request-response deadlocks, Pull Requests and Pull
Responses flowing in the same direction need to be handled inde-
pendently. Falcon achieves this by using two separate sequence
number spaces for Pull Requests and Pull Responses in each direc-
tion.

In contrast, RoCE uses the requester’s sequence number space
for the responses flowing in the other direction. In doing so, re-
quests and responses in the same direction use different sequence
number spaces, resolving the request-response deadlocks. However,
sharing the sequence number space between different directions,
i.e., requester and responder, has other negative side effects specifi-
cally in loss recovery - e.g., even if a packet is lost from responder
to requestor, the entire request needs to be retransmitted etc.

On the other hand, iWARP avoids these deadlocks by assuming
that the target RDMA has enough resources which is impractical
for a hardware protocol implementation.

A.2 Role of PSN and RSN
To meet the in-order reliable delivery requirements, each Falcon
packet carries PSN for reliability and RSN for transaction ordering.
Unlike alternatives such as RoCE, wherein PSN ordering implies
the required ordering between Pull Responses and Push Comple-
tions by virtue of using the requester’s sequence number space for
the responses flowing in the other direction, Falcon uses different
PSN sequence number spaces for requests and responses to avoid
deadlocks as discussed above (§A.1).
Thus, given separate PSN spaces for requests and responses,
PSNs cannot be used to ensure ordered delivery. To do so, Falcon
introduces RSNs that are used to provide ordering. Specifically,

263

Singhvi et al.

initiator Falcon uses RSNs to ensure that the responses are deliv-
ered in-order to the ULP, e.g., delivering Pull Responses and Push
Completions in order to the initiator ULP. Likewise target Falcon
uses RSN to deliver transactions in order to the target ULP.

B ADDITIONAL EVALUATION

B.1 Other MPI Collectives

Continuing from §6.3, Figures 30 and 31 plot the Intel MPI Bench-
mark’s AllGather and MultiPingPong collective completion time as
a function of message size, for RDMA-Falcon and TCP. We show
32-node scale with 192 processes per node, using all cores. The
benefits of Falcon extend to both small and large operations, but

larger gains are seen for small operations when the transport is not
bandwidth bound.

—=O0=RDMA avg —0O=TCP avg

128 512 2K
Message Size (Bytes)

100E . . .

32 8K 32K 128K

Figure 30: MPI allgather performance with 8 nodes, 192 processes per
node

10° £
104 - —O—RDMA max —{_—TCP max
< 10% © —0—RDMAavg —0-TCP avg
9

10% -
10" -

100' ' '

us)

Laten

32 128 512 2K 8K 32K 128K512K 2M
Message Size (Bytes)

Figure 31: MPI multi-pingpong performance with 2 nodes, 192 processes
per node

	Abstract
	1 Introduction
	2 Requirements and Why Existing HWTransports Fall Short
	3 Overview & Design Principles
	3.1 Falcon Overview
	3.2 Predictable Performance in Diverse Networks
	3.3 Hardware Design: Challenges and Principles

	4 Detailed Design
	4.1 Reliability
	4.2 Programmable Congestion Control
	4.3 Multipathing
	4.4 Support for Multiple Upper Layer Protocols
	4.5 Managing Hardware Resources
	4.6 Ensuring Isolation

	5 Building a Scalable HW Transport
	5.1 Building and Integrating Falcon into NICs
	5.2 Notable Implementation Choices
	5.3 Implementing and Scaling Falcon Adaptive Engine

	6 Evaluation
	6.1 Performance of Falcon Protocol
	6.2 Hardware Scalability
	6.3 Real-World Applications

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Additional Falcon design details
	A.1 Separate Request-Response PSN Space
	A.2 Role of PSN and RSN

	B Additional Evaluation
	B.1 Other MPI Collectives

